Scientists have uncovered an antibody that can fight off not only a wide range of SARS-CoV-2 variants, but also closely related coronaviruses1. The discovery could aid the quest to develop broad-ranging treatments and vaccines.
Tyler Starr, a biochemist at the Fred Hutchinson Cancer Research Center in Seattle, Washington, and his co-authors set out to shed light on a problem facing antibody treatments for COVID-19: some variants of SARS-CoV-2 have acquired mutations that enable the virus to escape the antibodies’ grasp.
The researchers examined 12 antibodies isolated from people who had recovered from COVID-19 by Vir Biotechnology, a company based in San Francisco, California, that was involved in the study. Those antibodies latch on to a fragment of viral protein that binds to receptors on human cells. Many antibody therapies for SARS-CoV-2 infection grab the same protein fragment, called the receptor binding domain.
The researchers compiled a list of thousands of mutations in the binding domains of multiple SARS-CoV-2 variants. They also catalogued mutations in the binding domain on dozens of SARS-CoV-2-like coronaviruses that belong to a group called the sarbecoviruses. Finally, they assessed how all these mutations affect the 12 antibodies’ ability to stick to the binding domain.
It’s good news that the team has identified antibodies that can bind to a range of sarbecoviruses, says Arinjay Banerjee, a virologist at the University of Saskatchewan in Saskatoon, Canada. “The biggest question that remains is, what about viruses that we don’t know exist yet?”
Although scientists can’t test an antibody’s activity against an unknown virus, Banerjee adds, pan-sarbecovirus treatments and vaccines would help to prepare the world to fight the next coronavirus that jumps from wildlife into humans.